

Jason Plumb

CS3461-001

Exam #3

05/06/99

5. Asymptotic complexity of concurrent array search in Java

(see submitted zip file for source code program)

The solution that implements a concurrent search of an unsorted array in Java requires a brief discussion of its asymptotic complexity. Theoretically, the concurrent solution seems like a good idea. One would naturally think that performing several searches simultaneously (via multiple threads) would reduce the overall search time. Unfortunately, this is not the reality.

When starting up new threads, there is some significant overhead that cannot be ignored. The time required to create a new instance of a thread and the start the thread running effects this problem solution greatly. Additionally, the size of the data set to be sorted plays an important role. It is the author's opinion the problem of sorting an array of size 100 could be solved much more rapidly with a simple linear search. The author recognizes, however, that an extremely large data set would be more appropriate for this analysis.

One must also consider the time taken by the Java virtual machine to swap contexts between the numerous threads that are started in the concurrent solution. Context swapping (as needed to handle concurrency on a single processor platform) requires some additional overhead that cannot be ignored when properly addressing time complexity.

In an ideal situation, each thread would execute in its own process on its own processor. If we ignore the items mentioned above (overhead in starting threads and context swapping), we can simplify the analysis. The concurrent solution builds a binary tree represented by a number of threads. This tree has a maximum worst case height of log2(n) + 1, where n is the number of elements in the array. By worst case, it is meant that the lowest level of the tree contains only 1 leaf. That is, an array with 64 elements would require building a tree of height 7, and an array of 128 elements would yield a tree of height 8. It should be noted that the size of the array can vary from 2x to 2(x+1) -1 without varying the height of the tree or the search time (where x is log2(n) for the worst case scenario described above). Each level of the tree represents a sequential step in the concurrent search using the ideal configuration.

If each level of the tree represents a sequential step in searching, then the worst case time for searching an array of size n would be log2(n) + 1. The asymptotic complexity of this expression simplifies to log2(n), or simply O(n) = log2(n).

